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Abstract. This paper summarizes recent research using networks of
coupled oscillators in real-time audio synthesis. We present two Max-
MSP objects that synthesize the dynamics of these systems in real-time
using a both an additive and rhythmic synthesis model to generate com-
plex timbre and rhythmic content. This type of self-organizing system
presents many useful avenues of exploration in the field of sound syn-
thesis and rhythmic generation. These objects allow users of Max-MSP
to synchronize different ensembles of sinusoidal oscillators in real-time
which can then be used as a vehicle for creative sound design, composi-
tion, and sound art.
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1 Introduction

Coupled oscillator networks are a type of dynamical systems that describe a
wide variety of interactive phenomena relevant to a number of research fields.
Among those pertinent to the natural world, coupled oscillator systems have
been used to account for firefly synchronization, synchronous chorusing in animal
populations, and the cortical rhythms that comprise human neural networks [1].
In terms of musical beat and perception, Large and colleagues have incorporated
coupled oscillators networks in their computational models to characterize how
we become entrained to different types of rhythmic stimuli [2].

Previous research in coupled oscillator networks as a generative sonic device
has looked at how their system behavior can be exploited in terms of their
potential for creating musically relevant content [3] [4]. This includes exploring
different strategies for rhythmic generation, audio synthesis, and as a control
signal to approximate many compositional techniques found in contemporary
music and computer music [5].

2 System Dynamics: Ensembles of Kuramoto Oscillators

In order to better understand the dynamics of these systems, a brief introduction
to the Kuramoto model is presented. Kuramoto proposed a model of limit-cycle
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oscillators that interact at the group level through their phase interactions [6].
Equation (1) shows the governing equation for such a system.

φ̇i = ωi +
Ki

N

N∑
j=1

sin(φj − φi) (1)

where φi is the phase of the ith oscillator and φ̇i is the derivative of phase with
respect to time. ωi is the intrinsic frequency of the oscillator, i, in a population
of N oscillators. Ki is the coupling factor for each oscillator and the sin(φj−φi)
term is the phase response function that determines the interaction between each
oscillator and the group. Typically, the range of intrinsic frequencies within the
ensemble is taken from a Gaussian distribution, g(ω) at a center frequency, ωc.

As Ki is increased, the oscillators with an ωi closer to ωc will begin to syn-
chronize to the group by aligning their phases to other oscillators with similar
frequencies. As more and more oscillators are recruited, synchrony emerges when
Ki > Kc where Kc is the point of critical coupling. Assuming a Gaussian distri-
bution of intrinsic frequencies, Kuramoto was able to show that as the number
of oscillators goes to infinity, Kc = 2

πg(fc)
.

Much more complicated types of synchrony occur when we let the intrinsic
frequencies and coupling coefficients, ωi(t) and Ki(t), take on different values
as a function of time. For example, Abrams and Strogatz were able to show
the existence of ”chimera states” that exhibit unusual dynamics where phase-
locked oscillators coexist with asynchronous ones [7]. These system dynamics
have perceptual implication in the audio synthesis routines described in the
following section.

2.1 Programmatic Design

The main challenge in designing a real-time synthesis scheme using the afore-
mentioned model is accounting for the phase interactions that must occur at
each sampling interval. The phase response term in Equation (1) shows how the
model grows exponentially as a function of N (O(N2)) for each oscillator in the
ensemble. To reduce the number of calculations per sampling interval, we use
Kuramoto’s application of mean-field coupling to the oscillators phases to derive
the complex order parameters shown in Equation (2)

Rejψ =
1

N

N∑
i=1

ejψi (2)

where R and ψ are defined as the phase coherence and average phase re-
spectively [6]. We can represent quadrature component of the complex phasor
as a 90◦ phase shifted version of the in-phase part. Now the oscillators are no
longer explicitly coupled to one another because their average phase governs
their behavior. This is shown in Equation (3).
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φ̇i = ωi +KR

N∑
j=1

sin(ψ − φi) (3)

From a computational standpoint, this has the benefit of reducing the number
of calculations necessary to carry out the phase coupling adjustments and allows
for a greater number of oscillators within each ensemble.

2.2 Faust Implementation

To create an interactive model, we utilized the functional programming language,
Faust (Functional Audio Stream)3, to implement the real-time signal process-
ing. Faust is capable of being compiled into to a number of music programming
related objects including Supercollider and Max MSP. Within Faust, the system
is implemented by defining a series of “adjustable phasors” that can be modu-
lated in terms of (instantaneous) phase and intrinsic frequency. By creating a
feedback loop that calculates the average phase of the group of oscillators, the
phase adjustments (shown in Equation (1) can be meaningfully applied to each
term thereby allowing the oscillators phases to synchronize. This is shown in Fig
1 which shows the block diagram in Faust with four oscillators.

initial_phases

frequencies

coupling_factor

adjustable_phasor

adjustable_phasor

adjustable_phasor

adjustable_phasor

adjustments(4...99999f : *)))

coupled_phaso...99999f : *)))

Fig. 1. Faust block diagram.

In the simple additive synthesis scheme, these phasors are applied as argu-
ments into sine functions at the output to generate a bank of N phase-coupled
sine waves. To use the oscillators to generate rhythms, we use the trajectory of

3 https://faust.grame.fr
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each phasor to trigger audio events upon each zero crossing (φi < φi−1) they en-
counter. We also must significantly decrease the distribution of ωi to fall within
a range normal for beat perception (0.25 Hz to 30 Hz). In order for the user
to be able to interact with the model, each oscillator’s coupling and intrinsic
frequency are made variable.

3 Kuroscillator-rhythm and Kuroscillator-audio objects

The Kuroscillator max objects can be found in the directory listed below4. Figure
2 shows the Kuroscillator-rhythm and Kuroscillator-audio objects within the
Max MSP programming environment.

Fig. 2. Kuroscillator-rhythm object with 4 oscillators (left) and Kuroscillator-audio
object with 8 oscillators (right).

The intrinsic frequencies of oscillators in both objects are limited to the range
of 0.25 Hz to 30 Hz. In the Kuroscillator-rhythm object, the user can also modify
the frequency of the audio oscillator’s triggered note (33 Hz < oscfreq <5 kHz)
and the length of the ASR envelope that gets applied to it. The Kuroscillator-
rhythm object generates N individual outputs so they can be used as a control
signal within Max MSP whereas the Kuroscillators-audio object is mixed down
to two channels at the output. These constraints can be modified in the Faust
source code that is located in the code directory.

The user defines which type of coupled oscillator object (rhythm or audio) and
how many oscillators (N ) in the ensemble using the convention “Kuroscillator-
type-N ” (where N ≤ 30). Max MSP then generates the object and allows the
user to interact with the coupling and intrinsic frequency by sending Max style
messages to the Kuroscillator objects. These parameters are addressable: for

4 https://bitbucket.org/no_lem/kuroscillators/src/master/
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the Kuroscillator-audio object, the user can send messages using the format
“./Kuroscillator-type-N /couplingi Ki” and “”./Kuroscillator-type-N /frequencyi
frequency”” to modify the couplings and intrinsic frequencies respectively. For
the Kuroscillator-rhythm object, the user can send additional Max messages of
the form “./Kuroscillator-type-N /oscfreqi oscillator frequency” and “./Kuroscillator-
type-N /reli sustain-time(sec)”. These parameters allow the user to explore dif-
ferent system states and bifurcations that are generated in real time. Assuming
an intrinsic frequency distribution that is Gaussian (unimodal with respect to a
center frequency), the oscillators can self-synchronize to the mean frequency of
the distribution when they approach the critical coupling coefficient. Figure 3
shows the output of the Kuroscillator-additive-50 object which shows a spectrum
of a system of 50 oscillators synchronizing over a period of around 6 seconds.

Fig. 3. Synchronizing frequencies of Kuroscillator-additive object with 50 oscillators.

Due to the flexibility of the programming environment, Max MSP is well
suited for interaction with the model since the user can utilize the plethora
of control objects in the Max tool kit. The examples directory hosted on the
project site includes several Max example patches that show interesting system
states of synchrony by allowing control signals to modulate system parameters
over time. These highlight the versatility of this model in producing sonic phe-
nomena that approximates many pre-existing techniques already in the field
of computer music namely (granular synthesis) and contemporary composition
(temporal canonization and phasing).
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4 Conclusions

These coupled oscillator objects allow for real-time interaction with this partic-
ular self-organizing dynamical system. Because these systems contain a plethora
of unusual output behaviors, Max MSP facilitates creative sonic exploration by
allowing users to interact with system behavior using its output sound as a form
of auditory feedback. Besides the sonic states characterized by “full synchrony”
(in which all oscillators synchronize to a mean frequency), there exists a number
of quasi-periodic states that emerge when oscillators take on different coupling
coefficients and intrinsic frequency distributions [8]. In general, it is likely that
the audio generated by these objects are perhaps best suited for types of music
that are more oriented toward experimental music practices such as procedural,
minimalist, and drone musical genres.

The Kuramoto model is just one particular type of coupled oscillator system
that allows for self-synchronizing behavior. There are several other types of cou-
pled systems that would be interesting candidates for synthesis: these include
pulse-coupled oscillators (Mirollo-Strogatz oscillators), Van der Pol oscillators,
and Stuart-Landau oscillators each one comprised by their own unusual dynam-
ics [9] [3]. Future research in the sonifying these dynamical systems would be
enhanced by integrating extant psychoacoustic models that allow us to better
perceive their system dynamics, particularly those that have been documented
in existing research.

References

1. Ravignani, A., Bowling, D., Fitch, W. T.: Chorusing, synchrony and the evolution-
ary functions of rhythm. In: Frontiers in Psychology. 5, 1–15 (2014)

2. Large, E., Herrera, J. A., Velasco, M. J.: Neural Networks for Beat Perception in
Musical Rhythm. In: Frontiers in Systems Neuroscience, pp.1–14 (2015)

3. Lambert, A. a Stigmergic Model for Oscillator Synchronisation and Its Application
in Music System. In: Proceedings of the International Computer Music Conference,
pp. 247–252. Ljublana (2012)

4. Collins, N. Errant sound synthesis. In: Proceedings of International Computer Mu-
sic. (2008)

5. Lem, N.: Sound in Multiples: Synchrony and Interaction Design using Coupled-
Oscillator Networks. In: Proceedings International Conference Sound and Music
Computing. Malaga, Spain (2019)

6. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators.
In: International Symposium on Mathematical Problems in Theoretical Physics,
Lecture Notes in Physics, pp. 420–422. Springer, Berlin (1975)

7. Abrams, D., Strogatz, S.: Chimera States for Coupled Oscillators. In: Physical Re-
view Letters, pp. 1–4. The American Physical Society, (2004)

8. Pikovsky, A., Rosenblum, M.: Dynamics of globally coupled oscillators: Progress
and perspectives. In: Chaos. (2015)

9. Mirollo, R., Strogatz, S. Synchronization of Pulse-Coupled Biological Oscillators.
In: SIAM Journal of Applied Mathematics, pp. 1645–1662.(1990)


